
The design topics in this section are intended for implementers, partners, and anyone who is designing and 
configuring an  Agiloft knowledgebase. The discussions are aimed at helping you understand the differences 
between various implementation options so that you can make an informed design choice. In most cases, the 
discussions are based on real-life scenarios that have been encountered by administrative users when designing a 
knowledgebase.

Knowledgebase design in  Agiloft is a large and complex topic, and systems can be configured in an infinite number 
of ways to address the specific needs of an organization. Oftentimes, there is no one right way to model the data, 
and some choices don't have a right or wrong answer. However, as you design your own system, these basic 
principles can help you always make a thoughtful, informed choice:

Keep things as simple as possible from the user's perspective. A good way to judge two alternative 
solutions is to ask yourself how difficult each would be to describe to a colleague. The easiest solution to 
describe is usually the best.

. This often means simply representing information how you think about it.Represent information logically

Represent information as explicitly as possible. You're more likely to capture useful information if the 
system is designed to prompt users for the right data.

Design Articles

Example

Imagine that whenever you make a sale, you need to convert a Lead record into Person and 
Company records. Instead of having the user manually convert the record, you can create a rule that 
converts it automatically when the Lead's status changes. This lessens the number of steps a user 
needs to perform, which makes things simpler for them and reduces the likelihood of errors.

Example

If suppliers in your business are individuals that you work with directly, you might think of them as 
people, so it makes sense to represent a Supplier as a Contact Type. However, if your suppliers are 
companies that you don't have a direct relationship with, it may make more sense to represent a 
Supplier as a type of Company.

Example

If you have a table for collecting bug reports, it's better to have two separate fields for describing the 
bug: one named Reproducible, typically a Yes/No Choice field, and another named Steps to 
Reproduce Issue. This is preferable to a single Steps to Reproduce Issue field, which might be left 
blank if the bug is not reproducible.



In many cases, a design choice for a knowledgebase lacks a single best solution. You often need to choose 
between two or more competing possibilities, evaluating the benefits and drawbacks of each choice. This is an 
important part of the process, because no matter which decision you make, it can impact the rest of your design, so 
always consider the implications of your choices.

Sometimes time or budget constraints push you towards the quick-to-build solution, but whenever possible, opt for 
a design that adheres to high standards. In particular, evaluate your design from three key areas: usability, 
elegance, and flexibility.

Make sure that the proposed design meets both the business' requirements and the users' needs.

User Experience

Make sure that the system is intuitive for users.

Always label action buttons and fields clearly and intelligibly.

Create clear and direct process flows.

Error-proofing

Design a system that prevents user mistakes.

Allow users to cancel unwanted actions.

Make sure that users can recover from mistakes.

Transparency

Make the system functionality transparent to administrators.

Make sure that it's as easy as possible to troubleshoot and fix errors.

Make sure that the design is as clean and robust as possible.

Simplicity

Create an overall simple and elegant design.

Set up a data structure that you can easily justify.

Layout

Criteria for Evaluating Design

Usability

Elegance



Create record layouts that are uncluttered and easy to navigate.

Design a look and feel that is attractive and matches the business' image.

Efficiency

Address any concerns with system performance, which might mean adjusting views, saved searches, 

global variables, and other aspects of the system that can impact performance.

Design rules with filters that limit the number of records that they run on, which increases processing 

speed and allows for scalability. 

Make sure that the system can be adapted to incorporate new business processes and features.

Adaptability

Design a system that isn't overly sensitive to change.

If you need to make changes to the system, consider whether the lookup mechanisms, choice lists, 

and other areas of the system will still be intelligible.

Extensibility

Create a system that allows new functions and processes, such as additional record types or 

workflows, to be easily added to the existing structure.

Maintainability

Simplify group and team permissions so that they can easily be managed and changed.

Create rules that require as little maintenance as possible. For example, if a filter uses the greater 

than or equal to operator, it can require additional maintenance if the choice list values change.

Flexibility


	Design Articles

