
eExecutes a preconfigured named Saved Search against the specified table and/or an query and returns ad hoc
and array of record data for the records that match the criteria. This operation variant allows pagination - iteration
through results page by page.

EWWSBaseUserObject[] os = ew.EWSearchTableWithQueryPaginated(String sessionId,
String tableName, String[] fieldNames, String searchName, String query, int page,
int limit);

Use EWSearchTableWithQueryPaginated call to search for records in the specified table based on a Saved Search
pre-configured in the GUI and/or to filter the records with an ad-hoc query. Specify page and limit parameters to
retrieve data page by page.

When querying records, consider the following rules and guidelines:

The username that was used to obtain the specified session token must have sufficient access rights to read

individual records within the specified table. Please verify specific permissions via Setup > Access >

.Manage Groups > [] > Table > [] > PermissionsEdit Group Select Table

Agiloft allows specifying fine-grained access permissions on the field level. The username that was used to

obtain the specified session token must have sufficient access rights to be able to read field content. Please

verify specific permissions via Setup > Access > Manage Groups > [] > Table > [Select Group to Edit

.] > Field PermissionsSelect Table

This call does not return records that have been deleted.

This method never returns null. In the case when no records are found an empty array is returned.

EWSearchTableWithQueryPaginated

Syntax

Usage

Rules and Guidelines

Special note on memory management: As WS integration implies pass-by-value semantics, the memory

allocated for the resulting array will be released once the data is sent to the client and the server-side JVM's

garbage collector considers it eligible for discarding.

If the client-side environment is the one with a garbage collector, the memory used by client-side array will

be cleared once the client-side garbage collector considers it eligible.

When the client environment uses explicit memory management, the client is responsible for freeing up the

used memory explicitly.

When using EWSearchTableWithQueryPaginated method, only the fields explicitly listed in the call are read.

Within the values returned for the fields requested explicitly, a null value - nillable="true" - means the actual

null value was retrieved. However, the rest of the fields - those not listed in the fieldNames array - will also

appear on the wire as nillable="true" elements due to limitations of the underlying Web Services stack.

To read all fields, use "*" string constant as the only element in the fieldNames array.

The main difference from using the EWSelectAndRead method, which uses an SQL where clause, is that ad-

hoc queries operate on a higher level, can use logical field names, are capable of recognizing choice values

and high-level relationships between table fields, and can use advanced and time-based criteria.

If the query doesn't parse according to the grammar, an attempt is made to parse the parameter value as a

sequence of identifiers using a different grammar. If both fail, the parameter value is treated as a Full-Text

Search query.

The ad-hoc query grammar is described at the end of this section.

Page numbers start with 0 (zero). A limit (page size) value of zero indicates "all records" and so all records

are returned on page 0 when limit 0 is specified; otherwise, with a non-zero page number, an empty result is

returned (no records).

When a page is not found, empty result is returned.

A call using pagination always returns a page worth of data. However, to truly take advantage of pagination

all other parameters must remain the same. If the table, fields, saved search, query or limit on a subsequent

call is different from the previous one, the underlying query is automatically rebuilt and re-run.

As such only one "open" query is allowed per client session. If the client requires multiple queries to be

iterated in parallel, the client code should create multiple sessions using the same login credentials.

This method doesn't support multi-threading – the client is responsible for restricting access to a single

thread i.e. one client thread = one session = one open query.

The query will remain "open" until the session is closed - an explicit logout is performed by the client or

session timeout occurs - or the application server discards the underlying low-level objects as a result of

resource management. In this case the query will be rebuilt and re-run automatically on the next call.

If the query is rebuilt and re-run, the result of the next call may not be fully consistent with the results of the

previous call, as the underlying data may have changed; for example a record was deleted, or the sort order

for the search in question was changed. Therefore, the dataset may appear to have "holes" and/or the

logical page boundaries may shift when iterating the query page by page.

Unsupported Types of Fields

1.

2.

3.

4.

1.

2.

3.

Embedded search results are not supported by the SOAP interface.

Optionally create a Saved Search in the GUI.

Perform the call using the name of the search and additionally filter the results with an ad-hoc query or use

the ad-hoc query without the search.

Handle the results, specifically the situations where there are no elements, one element, or more than one

element in the returned array.

Iterate to the next page as required.

In MyKB knowledgebase, as user A, find all cases assigned to the user used to login with low priority. Return the
first 40 summaries as two String arrays, up to 20 elements each.

Completion of the task is performed by the following steps:

Login to MyKB with "A" and "password" and English as the local language.

Search for cases using My Assigned search, additionally filtering by low priority.

Logout

public String[] search() throws Exception {
 EWServiceAPI binding = new EWServiceAPIServiceLocator().getDemo();
 try {
 String sessionId = binding.EWLogin("MyKB", "A", "password", "en");
 String[][] result = new String[2][];
 EWWSBaseUserObject[] records1 = binding.EWSearchTableWithQueryPaginated

Unsupported Types of Fields

Steps for Searching Records with a Saved
Search and/or Ad-hoc Query

Example Task

Sample Code - Java

(sessionId, "case",
 new String[] {"summary"}, "My Assigned", "Priority=Low", 0, 20);
 result[0] = new String[records1.length];
 for (int i=0; i<records1.length; i++) {
 result[0][i] = records1[i].getSummary();
 }
 EWWSBaseUserObject[] records2 = binding.EWSearchTableWithQueryPaginated
(sessionId, "case",
 new String[] {"summary"}, "My Assigned", "priority=Low", 1, 20);
 result[1] = new String[records2.length];
 for (int j=0; j<records2.length; j++) {
 result[0][j] = records2[j].getSummary();
 }
 return result;
 } finally {
 binding.EWLogout(sessionId);
 }
}

You can generate sample Web Services code for any table by selecting Setup > Table > [Select Table to Edit] >
API > Download Sample.

Name Type Description

sessionId String Session token

tableName String The name of the table where the query has to be performed.

fieldNames String array The list of fields to read

searchName String The optional name of the Saved Search to run

query String The ad-hoc query

page int The page number

limit int The records per page limit (page size)

An array of the records as descendants of EWWSBaseUserObject - a complex structure described in WSDL.

Arguments

Response

EWSessionException - client not logged in or session has expired; client should re-login.

EWPermissionException - user used to create the session lacks sufficient privileges to run the query.

EWWrongDataException - client has supplied wrong data.

EWOperationException - the operation has been blocked by an Agiloft function, e.g. table-level lock.

EWIntegrityException - specified table cannot be found or its primary key cannot be identified.

EWUnexpectedException - an unexpected exception has happened; the admin user should report this for
investigation.

Field names are usually column labels as seen in the UI. However, DB and User column names are accepted too.
Both field names and values may be surrounded by single quotes ('). If they contain spaces or some weird
characters then quoting is mandatory. For example:

Example Result

Priority=Low OK

'Priority'='Low' OK

Bug Priority=Low Invalid

'Bug Priority'=Low OK

'Bug Priority'=Very Low Invalid

'Bug Priority'='Very Low' OK

Simple criteria

Simple criteria has the form of

<field name><operator><value>

Faults

Informal Grammar Description for Ad-hoc
Queries

where operator is one of:

Operator Definition

= equals

!= not equals

~= contains

!~= doesn't contain

>= greater or equals

<= lesser or equals

> greater

< lesser

<< included by

!<< not included by

The (not) included by operator expects a comma-separated list of values without spaces at the right-hand side and
checks if field value is included into this list. In other words Priority << High,Low Is a short-hand for Priority=High ||
Priority=Low, where || is OR, as described below.

Logical criteria

Allows to combine other criterias using AND and OR operators. '&&' is AND, '||' is OR.

Operator precedence

Expression is evaluated from left to right, braces may be used for grouping. For example 'A && B || C' means '(A &&
B) || C'.

Time-based criteria

Allows to set relative date constraints. The form is <field name><operator><mode><value>, where operator is one
of =,!=,<,>,<=,>=, mode is either '-', which means 'old', '+', which means 'in the future' or '#', which means 'absolute'.
'value' is an integer followed by a single character:

m minute

h hour

w week

M month

y year

Examples:

Date<-1y 'Date' is less than one year old

Date>=+10m 'Date' is greater or equal than 10 minutes in the future

Duration=#2h 'Duration' is exactly two hours

Currently, more complex expressions like 'two years, one month and three hours' are not supported.

Advanced criteria

Advanced criteria has the form of <field name>:<from>-><to> and means 'field field name has changed from to from
' Either from or to but not both at the same time may hold '?' meaning 'any value'.to

This criteria searches through record history, and thus the history column must exist and must track changes to the
specified field. All simple and time-based criterias have implicit 'now' flag set, which means that they will match the
current record state, not the state when advanced criteria has been satisfied. In the other words, if we have a record
with the following modification history, with the bottom state being the most recent:

State=Open, Priority=Low State=Closed, Priority=Low State=Closed, Priority=High
Then 'State:Open->Closed && Priority=Low' will not find it, but 'State:Open->Closed && Priority=High' will.

More examples

Status=Open && ('Assigned To' = john || 'Assigned To' = jane)

(Priority>High || Summary ~= Urgent) && State:Closed->Reopened

OS=Windows,Linux && 'Modification Date' < -1y

	EWSearchTableWithQueryPaginated

