
Executes a preconfigured named Saved Search against the specified table and/or an ad-hoc query and returns and
array of record data for the records that match the criteria.

EWWSBaseUserObject[] os = ew.EWSearchTableWithQuery(String sessionId, String
 tableName, String[] fieldNames, String searchName, String query);

Use EWSearchTableWithQuery call to search for records in the specified table based on a Saved Search pre-
configured in the GUI and/or to filter the records with an ad-hoc query.

When querying records, consider the following rules and guidelines:

The username that was used to obtain the specified session token must have sufficient access rights to read

individual records within the specified table. Please verify specific permissions via Setup > Access >

Manage Groups >) > Table > () > Permissions.(Edit Group Edit Table

Agiloft allows specifying fine-grained access permissions on the field level. The username that was used to

obtain the specified session token must have sufficient access rights to be able to read field content. Please

verify specific permissions via Setup > Access > Manage Groups > () > Table >) > Edit Group (Edit Table

.Field Permissions

This call does not return records that have been deleted.

This method never returns null. In the case when no records are found an empty array is returned.
 As WS integration implies pass-by-value semantics, the memory Special note on memory management:
allocated for the resulting array will be released once the data is sent to the client and the server-side JVM's
garbage collector considers it eligible for discarding.

If the client-side environment is the one with a garbage collector, the memory used by client-side array will

be cleared once the client-side garbage collector considers it eligible.

EWSearchTableWithQuery

Syntax

Usage

Rules and Guidelines

1.

2.

3.

1.

2.

3.

When the client environment uses explicit memory management, the client is responsible for freeing up the

used memory explicitly.

When using EWSearchTableWithQuery method, only the fields explicitly listed in the call are read. Within the

values returned for the fields requested explicitly, a null value, where nillable="true", means the actual null

value was retrieved. However, the rest of the fields – those not listed in the fieldNames array – will also

appear on the wire as nillable="true" elements due to limitations of the underlying Web Services stack.

To read all fields, use "*" string constant as the only element in the fieldNames array.

The main difference from using the EWSelectAndRead method, which uses an SQL where clause, is that ad-

hoc queries operate on a higher level, can use logical field names, are capable of recognizing choice values

and high-level relationships between table fields, and can use advanced and time-based criteria.

If the query doesn't parse according to the grammar, an attempt is made to parse the parameter value as a

sequence of identifiers using a different grammar. If both fail, the parameter value is treated as a Full-Text

Search query.

The ad-hoc query grammar is described at the end of this section.

Optionally create a Saved Search in the GUI.

Perform the call using the name of the search and additionally filter the results with an ad-hoc query or use

the ad-hoc query without the search.

Handle the results, specifically the situations where there are no elements, one element, or more than one

element in the returned array.

In MyKB knowledgebase, as user A, find all cases assigned to the user used to login with low priority. Return
summaries as a String array.

Completion of the task is performed by the following steps:

Login to MyKB with "A" and "password" and English as the local language.

Search for cases using My Assigned search, additionally filtering by low priority.

Logout

Steps for Searching Records with a Saved
Search and/or Ad-hoc Query

Example Task

You can generate sample Web Services code for any table by selecting Setup > Table > [Select Table to Edit] >
.API > Download Sample

 public String[] search() throws Exception {
 EWServiceAPI binding = new EWServiceAPIServiceLocator().getDemo();
 try {
 String sessionId = binding.EWLogin("MyKB", "A", "password", "en");
 EWWSBaseUserObject[] records = binding.EWSearchTableWithQuery(sessionId, "case",
 new String[] {"summary"}, "My Assigned", "Priority=Low");
 String[] result = new String[records.length];
 for (int i=0; i<records.length; i++) {
 result[i] = records[i].getSummary();
 }
 return result;
 } finally {
 binding.EWLogout(sessionId);
 }
}

Name Type Description

sessionId String Session token

tableName String The name of the table where the query has to be performed.

fieldNames String array The list of fields to read

searchName String The optional name of the Saved Search to run

query String The ad-hoc query

An array of the records as descendants of EWWSBaseUserObject - a complex structure described in WSDL.

Sample Code - Java

Arguments

Response

EWSessionException - client not logged in or session has expired; client should re-login.

EWPermissionException - user used to create the session lacks sufficient privileges to run the query.

EWWrongDataException - client has supplied wrong data.

EWOperationException - the operation has been blocked by an Agiloft function, for example a table-level lock.

EWIntegrityException - specified table cannot be found or its primary key cannot be identified.

EWUnexpectedException - an unexpected exception has happened; the admin user should report this for
investigation.

Field names are usually column labels as seen in the UI. However, DB and User column names are accepted too.
Both field names and values may be surrounded by single quotes ('). If they contain spaces or some weird
characters then quoting is mandatory. For example:

Example Result

Priority=Low OK

'Priority'='Low' OK

Bug Priority=Low Invalid

'Bug Priority'=Low OK

'Bug Priority'=Very Low Invalid

'Bug Priority'='Very Low' OK

Simple criteria

Simple criteria has the form of

<field name><operator><value>

Faults

Informal Grammar Description for Ad-hoc
Queries

where operator is one of:

Operator Definition

= equals

!= not equals

~= contains

!~= doesn't contain

>= greater or equals

<= lesser or equals

> greater

< lesser

<< included by

!<< not included by

The included/not included by operators (<<, !<<) expect a comma-separated list of values, without spaces, at the
right-hand side of the equation and checks if field value is included (or not-included) in this list. In other words,
Priority << High,Low is a short-hand for Priority=High || Priority=Low, where || is the OR operator, as described
below.

Logical criteria

Allows to combine other criterias using AND and OR operators. '&&' is AND, '||' is OR.

Operator precedence

Expression is evaluated from left to right, braces may be used for grouping. For example 'A && B || C' means '(A &&
B) || C'.

Time-based criteria

Allows to set relative date constraints. The form is <field name><operator><mode><value>, where operator is one
of =,!=,<,>,<=,>=, mode is either '-', which means 'old', '+', which means 'in the future' or '#', which means 'absolute'.
'value' is an integer followed by a single character:

m minute

h hour

w week

M month

y year

Examples:

Date<-1y 'Date' is less than one year old

Date>=+10m 'Date' is greater or equal than 10 minutes in the future

Duration=#2h 'Duration' is exactly two hours

Currently, more complex expressions like 'two years, one month and three hours' are not supported.

Advanced criteria

Advanced criteria has the form of <field name>:<from>-><to> and means 'field <field name> has changed from from
e'. to to' Either from or to – but not both at the same time – may hold '?' meaning 'any valu

This criteria searches through record history, and thus the history column must exist and must track changes to the
specified field. All simple and time-based criteria have implicit 'now' flag set, which means that they will match the
current record state, not the state when advanced criteria has been satisfied. In the other words, if we have a record
with the following modification history, with the bottom state being the most recent:

State=Open, Priority=Low State=Closed, Priority=Low State=Closed, Priority=High
Then 'State:Open->Closed && Priority=Low' will not find it, but 'State:Open->Closed && Priority=High' will.

More examples

Status=Open && ('Assigned To' = john || 'Assigned To' = jane)

(Priority>High || Summary ~= Urgent) && State:Closed->Reopened

OS=Windows,Linux && 'Modification Date' < -1y

	EWSearchTableWithQuery

