
1.

2.

3.

4.

A webhook is a user-defined HTTPS callback that is triggered when a particular event occurs in a KB record. The
webhook receives real-time notification messages for events. When the event happens, the service makes an
HTTPS POST request to the webhook's HTTPS URL.

Webhooks are useful when you want to receive and process real-time data updates. Instead of needing to make a
REST API call to check for changes, when you register webhooks in your KB, the service automatically pushes
HTTPS POST event notifications to the webhook's URL to tell the webhook the event has occurred. This push-
based model requires fewer API requests overall and provides real-time updates with simpler build. With webhooks,
you can build more robust apps and update your application instantly.

Agiloft webhook notifications are generated when a record is created, edited, or deleted. The event notification
includes updated information about the field values that were selected in your webhook configuration. Optionally,
these notifications can also include detailed information like status changes.

To create and initialize a webhook:

Either the client application calls POST with a user token to register the webhook as a /ewws/webhooks

resource, or you create a webhook manually in .Setup > Integration > Webhooks Setup

Agiloft validates that the POST request is valid and the webhook URL is valid. There is a special processing

for this validation where Agiloft makes the HTTPS GET request to your webhook URL, and the webhook

URL is expected to respond in a specific way. For details, see .Verifying the Webhook URL

Agiloft sends the success response with an HTTP 2XX code to your client application (if you are using a

REST API call) with a unique webhook identifier and Location header, which contains the URL of the

webhook resource. This URL is created in Webhooks Setup in your KB.

Going forward, whenever the specified event happens in your KB, a notification for that event is sent to the

webhook URL.

Webhooks

Prerequisites

If you want to register a webhook using an API call, instead of creating the webhook manually in Setup >
, the call requires an OAuth access token, JWT token, or user credentials. Integration > Webhooks Setup

Each webhook event (Create/Update/Delete) requires the same permissions that grant access to
Webhooks Setup in your KB, and your application must have all these required permissions during this
process. Typically, the admin group has these permissions, but you might grant other groups permission to
access Webhooks Setup.

If the user doesn't have the appropriate permissions and a webhook REST request is sent on his behalf,
that request must register or modify the user's own webhook entries. To do so, it must specify the correct
user login for the "User’s Permissions to Use" parameter (see table below). The value of this parameter
must match the username from which the webhook REST request came.

Whichever authentication method you use, you must also use it in the following REST endpoints to perform
operations on behalf of the user who authorized the API access.

Configuring Webhooks

Webhooks can be created using REST APIs, or built directly in your KB from Setup > Integration > Webhooks
. When you access it for the first time, Webhooks Setup shows a Deploy button; after you click that and Setup

webhooks are successfully deployed, click Configure to access webhooks. The table is empty to begin with, but
going forward, any webhook you create will appear in this list, whether it was created manually in Webhooks Setup
or registered using a REST API call.

Each webhook entry sets the following properties:

Parameter Value Required Description

ID Automatically
generated

yes Identifies the webhooks entry in the webhooks configuration
table.

Webhook
Key

Automatically
generated

yes Unique identifier of webhook. An identifier is generated
automatically when a webhook is successfully registered, using
either a REST API call or by saving a new entry in the
Webhooks Setup menu. This identifier must be used in REST
webhook API calls.

Status Active
/Inactive

yes Status of webhook. A webhook can be either active or inactive.
By default, a webhook is inactive.

An Active webhook will receive requests for events as they
occur within KB.

A webhook marked as Inactive will stop receiving event
requests. Any other existing, unprocessed event requests will
be canceled and not sent to your webhook endpoint.

If an inactive webhook is made active, it will begin receiving
event requests once more as soon as new event notifications
occur.

Title Any string no Title of your webhook.

Description Any string no Description of the webhook.

Underscores

Do not use underscores in webhook headers.

Webhook
URL

Https URL yes Webhook's HTTPS URL. When the webhook event occurs, the
service makes an HTTPS POST request to this URL.

The webhook is an HTTPS-based service that listens at a
specific URL for incoming HTTPS POST notifications that are
triggered when events occur in the table entries within your KB.
You need this URL to subscribe your webhook to the event
notifications.

A webhook HTTPS URL must be accessible all times so that
Agiloft can send a POST request. This URL must be available
on the public Internet. Make sure your webhook supports POST
requests for incoming notifications and GET requests for the
verification process (see section). Verifying the Webhook URL
Your webhook URL must not be blocked by a firewall.

Table Name Table name
from the KB

yes Name of the table where you want to track changes.

Fields to
Retrieve

Any field
names

no The field names you want the webhook to send. Fields should
be listed using the name, not the label, and with each field
delimited by a comma: contract_title0, company_name,
created_by.

Supported types of fields: Append Only Text, Calculated Result,
Choice, Currency, Date, Date/Time, Email, Floating Point,
Integer, Long Integer, Multi Choice, Percentage, Short Text,
Telephone/Fax, Text, Time, URL, Linked field (only fields which
can be converted to a text value). Other field types can't be sent
as a part of webhook body and they must be retrieved directly
by REST API.

Event type Create
/Update
/Delete

yes The type of event you want to track in table entries. Select
Create to track new table entries, created from scratch; select
Delete to track when users delete entries from the table; or
select Update to track all updates to entries in the table.

Modification
type

Email/Web
/API

no Choose what types of record updates will trigger the webhook.
By default, the value is empty, which will trigger the webhook
without tracking the type of entry modification.

The following types of entry modification are possible:

Email: all updates that are made by inbound email

Web: user interactions with records through the web portal

API: record edits by the REST API

User’s
Permissions
to Use

The login of
an existing
user

yes The webhook call uses the permissions of the user you select
here. If you select a user who has limited permissions, that can
affect what is passed in the call. For example, if this user
doesn't have permission to view a certain record, or fields within
the record, that content will not be passed in the webhook call.

State Any string recommended This value will be returned to the client as a header. While not
 is highly recommended required, use of the state key parameter

to protect against CSRF. Maximum length of key is 255 symbols.

Webhook
Confirmation

Yes/No no Use confirmation in webhooks. If set to Yes, or not specified,
webhooks will work in standard mode, where the Verification-
Code should be included in the answer when you receive an
incoming webhook event.

If set to No, then when you receive a webhook event, you only
need a response with a 2XX status code on an incoming
webhook event, rather than needing to provide confirmation by
Verification-Code. For more information about Verification-Code
and verification, see below.Verifying the Webhook URL

Processing
by the
Action

Yes/No yes Default value is set to No. If set to No, the webhook is
processed . This using the standard workflow described above
means that process of real-time data updates happening when
table entry is created/edited/deleted will be processed at the
same time when event is occurs.

If set to Yes, the webhook event will not be processed by the
standard workflow. Instead, the event notification will be sent by
the Rule only. Real-time processing of this webhook will be
ignored. This means that the notification will be sent out when
the condition in a Rule is matched and when a Rule triggers the
webhook action directly.

Record Filter Any string no Use a record filter in webhooks. This accepts the same format
used in the , although saved searches cannot Search REST call
be used here.

An example of a query: company_name=Agiloft ||
use_as_reference=No

The following operators are supported:

Equals: ==

Does not equal: !=

And: &&

Or: ||

Less than: <

Less than or equal to: <=

Greater than: >

Greater than or equal to: >=

Date
Created

Automatically
generated

yes The system timestamp showing when the webhook entry is
created.

Owner Automatically
generated

yes Owner of the webhook entry.

https://wiki.agiloft.com/display/HELP/REST+-+Search

1.

2.

3.

4.

5.

You can create a new webhook directly in Agiloft. To do so:

Go to and click Deploy, then click Configure when the deployment Setup > Integration > Webhooks Setup

is complete.

In the Webhooks Setup page that opens, click New to create a new webhook.

Complete all the fields, which correspond to each of the parameters described .above

Once you have entered all required data, click Save.

To activate your webhook, click Enable.

When you enable a new webhook, Agiloft makes the HTTPS GET request to your webhook URL. The webhook
URL is expected to respond in a If the URL responds correctly, Agiloft automatically makes the specific way.
webhook Active, and it's ready for you to use.

If you need to deactivate the webhook later, simply click Disable for that entry in the list. Always disable a webhook
before you delete it in Webhooks Setup. Otherwise, if you remove the entry from the list without deactivating the
webhook, the webhook remains active until the next time the KB restarts.

You can also create webhooks using a REST API call instead of the Webhooks Setup menu.

This can be done by calling the POST API from your application and passing along the /ewws/webhooks

subscription data. The subscription specifies how the webhook intends to consume events. For details about
constructing the API call, section.see the parameters described in the Register API

When Agiloft receives a webhook creation request from your application, the Webhook service first the verifies
webhook URL by making a GET call it. If that call succeeds, the Webhook service returns the response of the
POST call, with the URL of the newly created webhook resource contained in the HTTPS Location header. The
client service can later make PUT/GET/DELETE calls on this URL. See the list of API calls for webhook

 below.management

Creating Webhooks in Agiloft

If you need to change the settings for a webhook that is already active, make sure to click Disable before
you make those changes. After you finish updating the settings, save the changes and click Enable to re-
activate the webhook.

Creating Webhooks with REST API

Before registering a webhook configuration successfully, Agiloft verifies that the provided webhook URL is able to
receive event notifications. To test this, when a new webhook registration request is received, Agiloft makes a
verification request to the webhook URL. This verification request is a HTTPS GET request. This request has a
custom HTTP header, Verification-Code. The value in this header is set to the random generated code that is
requesting to create and register the webhook. To successfully register a webhook, the webhook URL must
respond to this verification request with the 2XX response code in one of two ways:

In a response header, Verification-Code. This is the same header which was passed in the request, and can

be echoed back in the response.

In JSON response body with the key of Verification-Code, its value being the same as in the Verification-

Code header that was sent in the request.

The webhook is registered only if the URL successfully sends the 2XX response code as expected. If you
accidentally enter an incorrect webhook URL, the URL will fail to respond correctly to the verification of intent
request, and Agiloft will not send any notifications to that URL.

In addition, the webhook URL can also validate that it would receive notifications only through the webhooks which
are registered by a specific application. This can be done by validating the verification codes that are passed in the
Verification-Code header. If the webhook URL does not recognize that verification code, it must not respond with
the success response code, and Agiloft will take care that the provided URL is not registered as a webhook.

Webhook URL calls are always verified when:

Creating (registering) the Webhook entry. If this verification of webhook URL call fails, the webhook will not

be created.

Updating (changing) the Webhook entry. This changes a webhook's status from Inactive to Active. If this

verification of webhook URL call fails, the webhook status will not be changed to Active.

The Agiloft webhook service performs an implicit verification of the webhook URL in each webhook notification
request that is sent, as long as the Webhook Confirmation parameter is set to Yes . Therefore, every or left blank
webhook notification HTTPS request also contains the custom header called V . The value HTTPS erification-Code
of this header is the same value of Verification-Code (the random generated key) as described in Verifying the

.Webhook URL

The Webhook service considers the webhook notification successfully delivered using the same criteria as the initial
registration. Otherwise, the Webhook service reattempts delivery of the notification to the webhook URL up to five
times, at 10 seconds, 30 seconds, five minutes, 15 minutes, and 40 minutes.

Verifying the Webhook URL

Responding to Webhook Notifications

Each response has an HTTPS error status, error code, and error description. The error responses from the
webhook service have the following Json format: { "error" : "", "error_description" : "" }

This list covers common error codes, but not all. Note that new error codes might be added later, and existing error
codes might be updated. Your application should be prepared to do default handling for error scenarios.

Status
code

Error type Error description

400 BAD_REQUEST The request provided is invalid.

400 INVALID_JSON An invalid JSON was specified.

400 MISC_ERROR Some miscellaneous error has occurred.

401 UNAUTHORIZED Client must authenticate itself to get the requested response.

401 INVALID_ACCESS_TOKEN An access token provided in the request is invalid or has expired.

401 INVALID_LOGIN The login provided in the request is invalid or has blocked.

403 FORBIDDEN The client does not have access rights to the content; that is, it is
unauthorized, so the server is refusing to give the requested resource.

405 METHOD_NOT_ALLOWED The request method is known by the server but is not supported by
the target resource.

500 SERVER_ERROR Some miscellaneous server error has occurred.

This section details the REST API calls specific to using webhooks.

Format of Error Responses

Standard Error Codes

Webhook REST API

The client application makes an HTTPS POST call to the endpoint, using an OAuth access /ewws/webhooks

token, JWT token, or user credentials as authentication, and including the following parameters:

Object Required Value Notes

Request Type - POST -

Request
Content-Type

yes application/json -

Request body yes {
 "title": "",
 "description": "",
 "webhook_url": "",
 "webhook_status": "",
 "table_name": "",
 "event_type": "",
 "modification_type": [
 ""
],
 "entry_fields": [
 ""
],
 "record_filter": "",
 "user_permissions": "",
 "webhook_confirmation":
"",
 "state_key": "",
 "by_rule": "" }

Title, description, URL, status, table name, event
type, and user permissions are required.

For more information about the parameters, see
Configuring Webhooks

Response
Content-Type

- application/json -

Response
header

- string Location Header specifying the resource location
of the webhook

Response body - {
 "id": integer value,
 "webhook_key": ""
}

For more information about the parameters, see
Configuring Webhooks

Response
status code

- 201 The server must respond with this status.

Error Codes

Registering Webhooks

Error Codes

This list covers common error codes, but not all. Note that new error codes might be added later, and existing error
codes might be updated. Your application should be prepared to do default handling for error scenarios.

Status
code

Error type Error description

400 INVALID_PARAMETERS Some parameters in the request are invalid.

400 INVALID_URL An invalid webhook URL was specified.

400 MISSING_REQUIRED_PARAM The required parameters are missing.

400 WEBHOOK_LIMIT_EXCEEDED This webhook can’t be created. The events array
{events} has reached the maximum number of active
webhooks.

403 WEBHOOK_CREATION_NOT_ALLOWED Webhook creation is not allowed.

See also the Format of error response section for details.

The client application makes an HTTPS GET call to the endpoint, using an OAuth access token, /ewws/webhooks

JWT token, or user credentials as authentication, and including the following parameters:

Object Required Value Notes

Request Type - GET -

Request Parameter
called wh_key

yes The Webhook Key of your
webhook entry

URL-encoded value of your Webhook Key
you want to retrieve

Retrieving Webhook Information by Webhook
Key

Response body - {
 "webhook_id": integer
value,
 "webhook_key": "",
 "title": "",
 "description": "",
 "webhook_url": "",
 "webhook_status": "",
 "table_name": "",
 "event_type": "",
 "modification_type": [
 ""
],
 "entry_fields": [
 ""
],
 "record_filter": "",
 "user_permissions": "",
 "webhook_confirmation":
"",
 "state_key": "",
 "by_rule": "",
 "owner": {
 "login": "",
 "full_name": ""
 }
}

For more information about the parameters,
see Configuring Webhooks

Response Content-
Type

- application/json -

Response status code - 200 The server must respond with this status.

Error codes

This list covers common error codes, but not all. Note that new error codes might be added later, and existing error
codes might be updated. Your application should be prepared to do default handling for error scenarios.

Status code Error type Error description

400 INVALID_PARAMETERS Some parameters in the request are invalid.

400 MISSING_REQUIRED_PARAM The required parameters are missing.

404 INVALID_WEBHOOK_KEY An invalid webhook key was specified.

See also the section for details.Format of error response

The client application makes an HTTPS GET call to the endpoint, using an OAuth access /ewws/webhooks

token, JWT token, or user credentials as authentication, and including the following parameters:

Object Required Value Notes

Request
Type

- GET -

Query
Parameters

yes
byStatus: Active, Inactive, All. Query parameter to fetch all

active webhooks (if Active value is specified) or all inactive

webhooks (if Inactive value is specified) or all entries in

other case. The query parameter is optional.

byEventType: Create, Update, Delete. Query parameter to

fetch all webhooks by event type. The query parameter is

optional.

byTable: the_table_name. Query parameter to fetch all

webhooks by table name within KB. The query parameter is

optional.

byField: the_field_name. Query parameter to fetch all

webhooks by field name within KB. The query parameter is

optional.

Query parameter
values should be
URL-encoded.

Retrieving the List of Webhooks

Response
body

- [{

 "webhook_id": integer value,
 "webhook_key": "",
 "title": "",
 "description": "",
 "webhook_url": "",
 "webhook_status": "",
 "table_name": "",
 "event_type": "",
 "modification_type": [
 ""
],
 "entry_fields": [
 ""
],
 "record_filter": "",
 "user_permissions": "",
 "webhook_confirmation": "",
 "state_key": "",
 "by_rule": "",
 "owner": {
 "login": "",
 "full_name": ""
 }
},...]

For more
information about
the parameters,
see Configuring
Webhooks

Response
Content-
Type

- application/json -

Response
status code

- 200 The server must
respond with this
status.

Error codes

This list covers common error codes, but not all. Note that new error codes might be added later, and existing error
codes might be updated. Your application should be prepared to do default handling for error scenarios.

Status code Error type Error description

400 INVALID_PARAMETERS Some parameters in the request are invalid.

400 MISSING_REQUIRED_PARAM The required parameters are missing.

See also the section for details.Format of error response

Updating the Webhook

The client application makes an HTTPS PUT call to the endpoint, using an OAuth access token, /ewws/webhooks

JWT token, or user credentials as authentication, and including the following parameters:

Object Required Value Notes

Request Type - PUT -

Request Content-
Type

yes application/json -

Request body yes {
 "webhook_key": "",
 "title": "",
 "description": "",
 "webhook_url": "",
 "webhook_status": "",
 "table_name": "",
 "event_type": "",
 "modification_type": [
 ""
],
 "entry_fields": [
 ""
],
 "record_filter": "",
 "user_permissions": "",
 "webhook_confirmation":
"",
 "state_key": "",
 "by_rule": ""
}

The webhook key is required, and the other
parameters are optional.

For more information about the parameters, see
Configuring Webhooks

Response
Content-Type

- application/json -

Response body - {
 "id": integer value,
 "webhook_key": ""
}

For more information about the parameters, see
Configuring Webhooks

Response status
code

- 200 The server must respond with this status.

Error codes

This list covers common error codes, but not all. Note that new error codes might be added later, and existing error
codes might be updated. Your application should be prepared to do default handling for error scenarios.

Updating the Webhook

Status code Error type Error description

400 INVALID_PARAMETERS Some parameters in the request are invalid.

400 INVALID_URL An invalid webhook URL was specified.

400 MISSING_REQUIRED_PARAM The required parameters are missing.

403 WEBHOOK_CREATION_NOT_ALLOWED Webhook creation is not allowed.

See also the section for details.Format of error response

The client application makes an HTTPS PUT call to the endpoint, using an OAuth access token, /ewws/webhooks

JWT token, or user credentials as authentication, and including the following parameters:

Object Required Value Notes

Request Type - PUT -

Request Content-
Type

yes application/json -

Request body yes {
 "webhook_key":
"",
 "webhook_status":
""
}

Both parameters are required.

For more information about the parameters, see
Configuring Webhooks

Response Content-
Type

- application/json -

Response body - {
 "id": integer value,
 "webhook_key": ""
}

For more information about the parameters, see
Configuring Webhooks

Response status
code

- 200 The server must respond with this status.

Error codes

This list covers common error codes, but not all. Note that new error codes might be added later, and existing error
codes might be updated. Your application should be prepared to do default handling for error scenarios.

Status code Error type Error description

Activate or Deactivate the Webhook

400 INVALID_PARAMETERS Some parameters in the request are invalid.

400 MISSING_REQUIRED_PARAM The required parameters are missing.

403 WEBHOOK_CREATION_NOT_ALLOWED Webhook creation is not allowed.

See also the section for details.Format of error response

The client application makes an HTTPS DELETE call to the endpoint, using an OAuth access /ewws/webhooks

token, JWT token, or user credentials as authentication, and including the following parameters:

Object Required Value Notes

Request Type - DELETE -

Request Content-
Type

yes application/json -

Request body yes {
 "webhook_key":
""
}

For more information about the parameters, see
Configuring Webhooks

Response body - Empty -

Response status
code

- 200 The server must respond with this status.

Error codes

This list covers common error codes, but not all. Note that new error codes might be added later, and existing error
codes might be updated. Your application should be prepared to do default handling for error scenarios.

Status code Error type Error description

400 INVALID_PARAMETERS Some parameters in the request are invalid.

400 INVALID_WEBHOOK_KEY Invalid webhook key.

400 MISSING_REQUIRED_PARAM The required parameters are missing.

403 WEBHOOK_DELETION_NOT_ALLOWED Webhook creation is not allowed.

See also the section for details.Format of error response

Deactivating and Removing the Webhook

	Webhooks

